THE CLAISEN REARRANGEMENT PROMOTED BY TITANIUM TETRACHLORIDE

Koichi NARASAKA, Edward BALD, and Teruaki MUKAIYAMA

Department of Chemistry, Faculty of Science,

The University of Tokyo, Hongo, Bunkyo-ku, Tokyo 113

In coexistence with TiCl₄ and N-trimethylsilylacetanilide, allyl aryl ethers involving 2-butenyl phenyl ether and 3-methyl-2-butenyl phenyl ether were rearranged under mild conditions to afford allyl phenols in good yields.

The Claisen rearrangement is generally effected by prolonged heating (180°C-200°C) of the allyl phenyl ethers in solvents such as dimethylaniline. Further, it is also known that Lewis acids such as $\mathrm{BF_3-2CH_3C00H^2}$, $\mathrm{BCl_3}^3$ and $\mathrm{Et_2AlCl^4}$ cause the acid catalysed Claisen rearrangement under mild conditions. However, for the rearrangement of a wide variety of allyl phenyl ethers, these acid catalysts are not generally employed. For example, $\mathrm{Et_2AlCl}$ was not effective when used for the rearrangement of allyl aryl ethers bearing electron-donating groups on the aromatic ring, and the use of $\mathrm{BCl_3}$ is limited to those cases when the allyl group was not highly substituted.

In the present communication we wish to report the usefulness of ${\rm TiCl}_4$ in the Claisen rearrangement. When allyl phenyl ether(Ia) was treated with an equimolar amount of ${\rm TiCl}_4$ in ${\rm CH}_2{\rm Cl}_2$ at -78°C, 2-(2-chloropropyl)phenol(III) was obtained as a major product, along with a small amount of 2-allylphenol(IIa). This result indicates that hydrogen chloride formed adds simultaneously to the double bond of 2-allylphenol(IIa), the rearranged product, to yield the chloride (III).

In order to prevent the formation of the chloride (III), the rearrangement was examined in the presence of a hydrogen chloride scavenger such as amines, cyclohexene oxide and silyl compounds to trap hydrogen chloride. After a number of investigations, it was found that when the reaction was carried out in the coexistence with N-trimethylsilylacetanilide (IV)⁵⁾ at room temperature,

2-allylphenol (IIa) was exclusively obtained in 88% yield.

The experimental procedure is as follows: A $\mathrm{CH_2Cl_2}$ (0.75 ml) solution of $\mathrm{TiCl_4}$ (3.0 mmol) was added at room temperature under an argon atmosphere to a stirred solution of 1.5 mmol of Ia and 2.2 mmol of IV in 20 ml of $\mathrm{CH_2Cl_2}$. After being stirred for 3 hr, the reaction mixture was hydrolyzed with 20 ml of water and extracted with ether. The extract was dried over anhydrous $\mathrm{Na_2SO_4}$, and condensed under reduced pressure. The product (IIa)⁶⁾ was isolated in 88% yield after separation by thin layer chromatography.

Further, a detailed study on the reaction of various allyl aryl ethers (Ib-e) with ${\rm TiCl}_4$ and IV was undertaken, and the results are summarized in Table.

Table The	Rearrangement	of	Substituted	A11v1	Arv1	Ethers
-----------	---------------	----	-------------	-------	------	--------

Ether	Molar ratio	Reaction	Yield of Phenol (II), %	
Ethei	(I) : (IV) : TîC1 ₄	time	ortho	para
IP CH3-0-0	1 : 1 : 1	1 hr	95 ⁶⁾	
Ic CH ₃	1 : 1 : 1	overnight	50 ⁶)	29 ⁷)
Id C1——0	1 : 1 : 2	overnight	838)	_
Ie C1—C1	1 : 1 : 2	24 hr	36 ⁹)	

The results show that allyl tolyl ethers (Ib, c) rearranged smoothly in the presence of an equimolar amount of IV and $TiCl_4$. On the other hand, an excess amount of

TiCl₄ was required for the rearrangement of allyl 2-chloro and 2,4-dichlorophenyl ethers (Id,e). In these cases, 2-allyl-4-chlorophenol and 2-allyl-4,6-dichlorophenol were produced in 83 and 36% yields, respectively, along with 2-chlorophenol and 2,4-dichlorophenol isolated in 10 and 30% yields.

In addition, the rearrangement of substituted allyl phenyl ethers, such as 2-butenyl phenyl ether (V) and 3-methyl-2-butenyl phenyl ether (X) were examined. Into a mixture of 3.8 mmol of V and IV in 30 ml of $\mathrm{CH_2Cl_2}$, a $\mathrm{CH_2Cl_2}$ (4 ml) solution of 5.7 mmol of $\mathrm{TiCl_4}$ was added with stirring at -78°C, and after 10 min, the mixture was quenched with water. By thin layer chromatography the products were separated into two fractions. The less polar fraction is ortho rearranged products 10) (VI and VII in the ratio of 2.5 to 1.0) in isolated yield of 74%. The more polar fraction is para rearranged products 10) (VIII and IX in the ratio of 1.0 to 4.8) in isolated yield of 19%.

In contrast to the above results none of the rearranged product was isolated but a large amount of phenol was obtained when 3-methyl-2-butenyl phenyl ether (X) was treated with $TiCl_4$ and IV. On the other hand, it was found that when the mixture of 2 equimolar amounts of $TiCl_4$ and an equimolar amount of $Ti(0-isoPr)_4$ in 10 ml of CH_2Cl_2 was added to the mixture of an equimolar amounts of X and IV at -78°C, the rearrangement proceeded rapidly within 10 minutes and 2-(3-methyl-2-butenyl)phenol (XI) and 4-(3-methyl-2-butenyl)phenol (XII) were isolated in 25% and 27% yields, respectively.

$$\frac{2 \operatorname{TiCl}_{4}, \operatorname{Ti(0-isoPr)}_{4}, \operatorname{IV}}{\operatorname{CH}_{2}\operatorname{Cl}_{2}, -78^{\circ}\operatorname{C}} \xrightarrow{\operatorname{OH}} + \underbrace{\operatorname{OH}}_{2}\operatorname{CH}_{2}\operatorname{Cl}_{2}, \operatorname{CXII} 25^{\circ}_{8} \times \operatorname{CXII} 27^{\circ}_{8}$$

These results indicate that when ${\rm TiCl}_4$ is employed in the rearrangement of

ally1 ary1 ethers (I), it is as effective as $BC1_3$ which has been hitherto considered to be the most suitable acid catalyst. Further, it is also noted that the rearrangement of 2-buteny1 pheny1 ether (V) proceeds in higher yield (93%) than in the case of $BC1_3$ (55%) 3 , and even 3-methy1-2-buteny1 pheny1 ether (X) is converted into the rearranged phenols (XI, XII) by the combined used of $TiC1_4$ with $Ti(0-isoPr)_4$.

In conclusion, it is noted that, the present method using ${\rm TiCl}_4$ possesses a preparative advantage over the hitherto known acid catalyst ${\rm BCl}_3$.

References

- 1) D. S. Tarbel, "Organic Reactions" Vol. II, J. Wiley and Sons, N. Y., p. 1 (1944).
- 2) L. Y. Bryusova and M. L. Ioffe, J. Gen. Chem. (U. S. S. R.), <u>11</u>, 722 (1941); Chem. Abstr., 36, 430 (1942).
- 3) W. Gerrard, M. F. Lappert, and H. B. Silver, Proc. Chem. Soc., 19 (1957); J. Borgulya, R. Medeja, P. Fahrni, H. J. Hansen, H. Schmid, and R. Barner, Helv. Chim. Acta, 56, 14 (1973).
- 4) F. M. Sonnenberg, J. Org. Chem., 35, 3166 (1970).
- 5) This reagent was prepared by the reaction of trimethylsilyl chloride with lithioacetanilide in THF at 0° C, and purified by distillation (bp 60° C/l mmHg).
- 6) The nmr spectra of these compounds were identical with those cited in C. J. Pauchert and J. R. Campbell "The Aldrich Library of NMR Spectra", Vol. IV,
- 7) nmr; (CCl₄) δ 2.19 (s, 3H), 3.27 (d, 2H), 5.42 (broad, 1H, OH), 4.82-6.29 (3H, -CH=CH₂), 6.46-7.09 (m, 3H).
- 8) nmr; (CC1₄) δ 3.27 (d, 2H), 5.47 (s, 1H, OH), 4.84-6.27 (3H, -CH=CH₂), 6.44-7.14 (m, 3H).
- 9) nmr; (CC1 $_4$) δ 3.44 (d, 2H), 4.97-6.41 (3H, -CH=CH $_2$), 5.69 (s, 1H, OH), 7.11 (d, 1H), 7.28 (d, 1H).
- 10) These products were separated by preparative gas chromatography and the structures were determined according to the nmr spectra (CCl $_4$); VI: δ 1.36 (d, 3H), 3.40-3.93 (m, 1H), 4.90-5.30 (m, 3H, =CH $_2$ and OH), 5.78-6.33 (1H, -CH=), 6.55-7.20 (m, 4H). VII: δ 1.71 (m, 3H), 3.31 (m, 2H), 4.61 (s, 1H), 5.58 (m, 2H), 6.56-7.23 (m, 4H). VIII: δ 1.32 (d, 3H), 4.75-5.20 (=CH $_2$), 6.64 (d, 2H), 7.05 (d, 2H). IX: δ 1.70 (m, 3H), 3.06-3.38 (m, 2H), 4.33 (broad s, 1H, OH), 5.48 (m, 2H), 6.62 (d, 2H), 6.95 (d, 2H).
- 11) nmr; (CC1₄) δ 1.73 (s, 6H), 3.30 (d, 2H), 5.12-5.50 (m, 1H), 5.50 (s, 1H, OH), 6.50-7.20 (m, 4H).
- 12) nmr; (CCl $_4$) δ 1.70 (s, 6H), 2.20 (d, 2H), 5.27 (broad t, 1H), 6.10 (broad, 1H), 6.65 (d, 2H), 6.95 (d, 2H).